Precursors of extreme increments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme-Value Analysis of Standardized Gaussian Increments

Let {Xi, i = 1, 2, . . .} be i.i.d. standard gaussian variables. Let Sn = X1 + . . . + Xn be the sequence of partial sums and Ln = max 0≤i<j≤n Sj − Si √ j − i . We show that the distribution of Ln, appropriately normalized, converges as n → ∞ to the Gumbel distribution. In some sense, the the random variable Ln, being the maximum of n(n+1)/2 dependent standard gaussian variables, behaves like t...

متن کامل

An extreme value theorem on the standardized increments of partial sums

Abstract For an independently and identically distributed Gaussian sequence, X1, X2, . . . , Xn, we consider the maximum of its standardized increments of partial sums (denoted by M I n). We show that it has nearly the same asymptotic distribution as the maximum of the sequence. This result can be viewed as an improvement over Darling-Erdos-type theorem, which can be viewed as an improvement ov...

متن کامل

Increments of Random Partitions

For any partition of {1, 2, . . . , n} we define its increments Xi, 1 ≤ i ≤ n by Xi = 1 if i is the smallest element in the partition block that contains it, Xi = 0 otherwise. We prove that for partially exchangeable random partitions (where the probability of a partition depends only on its block sizes in order of appearance), the law of the increments uniquely determines the law of the partit...

متن کامل

Relative Increments of Pearson Distributions

This paper is a direct continuation of [6] whose results are applied to Pearson distributions, particularly to normal, gamma, beta of the rst kind, Pareto of the second kind, chi-square and other speci c distributions. Acta Mathematica Academiae Paedagogicae Ny regyh aziensis 15 (1999), 45{54 www.bgytf.hu/~amapn In this paper we investigate the hazard rate and relative increment functions of Pe...

متن کامل

Shellsort with three increments

A perturbation technique can be used to simplify and sharpen A. C. Yao's theorems about the behavior of shellsort with increments (h; g; 1). In particular, when h = (n 7=15) and g = (h 1=5), the average running time is O(n 23=15). The proof involves interesting properties of the inversions in random permutations that have been h-sorted and g-sorted. Shellsort, also known as the \diminishing inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2007

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.75.016706